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SUMMARY 

This paper describes flow around a pair of cylinders in tandem arrangement with a downstream cylinder 
being fixed or forced to oscillate transversely. A sinusoidal parietal velocity is applied to simulate cylinder 
oscillation. Time-dependent Navier-Stokes equations are solved using finite element method. It is shown 
that there exist two distinct flow regimes: 'vortex suppression regime' and 'vortex formation regime'. 
Averaged vortex lengths between the two cylinders, pressure variations at  back and front stagnant points as 
well as circumferential pressure profiles of the downstream cylinder are found completely different in the two 
regimes and, thus, can be used to  identify the flow regimes. It is shown that frequency selection in the wake of 
the oscillating cylinder is a result of non-linear interaction among vortex wakes upstream and downstream 
of the second cylinder and its forced oscillation. Increasing cylinder spacing results in a stronger oscillatory 
incident flow upstream of the second cylinder and, thus, a smaller synchronization zone. 

KEY WORDS Cylinder oscillation Frequency selection Lock-in Vortex formation regime Vortex suppression 
regime Wake flow 

1. INTRODUCTION 

Flow-structure interaction commonly occurs in arrays of cylinders subjected to crossflow. 
Investigation of such flow interference is important in the area of flow-induced vibration. It is well 
known that wake-related Strouhal-type periodicities can sometimes lead to resonances of the 
structure. Oscillation of the cylinder can also cause the vortex shedding pattern to change and the 
vortex shedding frequency to shift. Information about the response states that develop in the 
wake of an oscillating cylinder is essential for active control of the vortex wake. In the past 
decades, advances have been made in the understanding of the fundamental phenomena of 
cylinder-vortex-wake interactions. These advances have resulted in a number of new theories 
explaining the discontinuous Reynolds-number-Strouhal-number relation, the transition to 
turbulence in open flows, and so on.' However, in most of these studies, emphasis has been 
given to the role played by the oscillation of the cylinder in which the incident flow is assumed to 
be uniform. More complex cases such as the wake-cylinder-wake system are more frequently 
encountered in practical occasions. An oscillating cylinder placed in the wake of upstream 
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cylinders is a simple example of such an interaction system. The investigation of frequency 
selection in a wake-cylinder-oscillation-wake system can offer significant insight into the under- 
standing of the interactions of the laminar wakes. 

For a cylinder oscillating in uniform flow, when the external forcing frequency is approached to 
the natural vortex shedding frequency, the latter may be drifted towards the forcing frequency 
and be locked on to it. This phenomena is denoted as ‘lock-in’ or ‘synchronization’. On the 
contrary, if the forcing frequency is sufficiently far from the natural shedding frequency, both 
forcing and shedding frequencies will be detected in the wake. In some cases, vortex shedding 
frequency may differ from natural shedding frequen~y,~. ’ but it is still distinguishable from the 
forcing frequency. This response state is denoted as ‘non-lock-in’ state.697 For a cylinder 
oscillating in the wake of another cylinder, the same concept can be applied. In fact, both response 
states can be obtained, depending upon the flow  condition^.^^^ 

In the present work, the simplest system of wake-cylinder-oscillation-wake is considered, 
which contains a pair of cylinders in tandem arrangement with a downstream cylinder oscillating 
transversely. Although geometrically simple, it pertains the basic characteristics of a tube-array 
system. Flow characteristics and flow regimes are studied. The influence of oscillatory wake flow 
upstream of an oscillating cylinder on its lock-in range is assessed by changing the distance 
between the two cylinders. Finally, the numerical results obtained are compared with experi- 
mental data of Tanida et aL2 

u=o u=o 

w; 6 v=A sin(2~ & t) 
outflow B. C. 

5 LP 20 w 

u= 1, v=o 

2. MATHEMATICAL FORMULATION AND SOLUTION PROCEDURE 

We consider two cylinders placed in tandem. Computational domain is depicted in Figure 1. We 
assume that flow is isothermal, incompressible and Newtonian. The governing equation consists 
of the equation of continuity and the momentum equation written in their dimensionless form as 
follows: 

v . u = o ,  (1) 
au 1 
- at + u  * v u  =- vp+- Re VZ”, 

where u=(u, v) is the velocity vector, R e =  U ,  Dlv denotes the Reynolds number, D the diameter 

Figure 1. Computational domain 
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of the cylinder, U ,  the free-stream velocity and v the kinematic viscosity of the fluid. All lengths 
are scaled by D, and all velocities by U r n .  

No-slip conditions are imposed on the upstream cylinder while the downstream cylinder has 
a sinusoidal velocity if there is an external forcing: 

upstream cylinder: 
u=o, u=o,  

downstream cylinder: 
A sin(2nf, t )  with forcing, 
0 without forcing, 

u=o, v = {  

(3) 

(4) 

where .f, is the forcing frequency and A the velocity amplitude of cylinder oscillation. This forcing 
corresponds to a parietal velocity, i.e. aspiration and transpiration through the cylinder wall. For 
sufficiently large computational domain, as the one used in the present work (Figure l), flow 
perturbation due to the presence of the cylinders at the inlet, upper and lower boundaries is 
negligible. Therefore, we suppose that flow velocity reaches the free-stream value at these 
boundaries: u = 1, u= 0. Free outflow conditions (natural boundary conditions) are imposed at the 
outlet boundary:' 

2 au 

Re i?x 
-p+--=O, 

-( 1 -++. 3u a v  
Re dy dx 

It is noted that the forcing mechanism used in the present work is not strictly equivalent to 
a real oscillating cylinder. Since the motion of downstream cylinder has two effects: the velocity 
effect, and another effect caused by the displacement of the cylinder which changes the system 
geometry. However, for small-amplitude oscillations (as in the present study where A < 0.2), the 
displacement of the cylinder is very small and, thus, has minor effects on basic characteristics of 
the system. In this case, the parietal velocity forcing is a good approximation of the problem. This 
assumption can be verified from the results in Section 3. Further verification was made by 
applying such forcing onto a single cylinder to simulate its oscillation. The results thus obtained 
are compared with the results found in the literature where a transformation of co-ordinates was 
performed to simulate cylinder motion;" similar results are found. One of the major advantages 
of the present forcing is that it is very simple and easy to be dealt with numerically. Moreover, this 
forcing mechanism can be easily applied to multiple-cylinder systems in which some of the 
cylinders may oscillate (in phase or out of phase) while others remain at rest. The co-ordinate 
transformation method in such a case is inapplicable because the system is far too complicated. 
Nevertheless, it should be remarked that parietal velocity forcing is valid only for small-amplitude 
oscillations; the displacement effect should be taken into account when the amplitude of cylinder 
oscillation is large. 

Time-dependent Navier-Stokes equations are solved in terms of its primitive variables using 
finite element method. Galerkin finite element approach is applied for the discretization of the 
governing equation. Nine-node quadratic and quadrilateral elements are used for the velocity 
while bilinear interpolation function for the pressure. Temporal discretization is performed using 
Crank-Nicolson scheme. It is non-dissipative, second-order-accurate and completely stable. The 
discretization in time and space results in the following non-linear system: 

CK(U)I{Ul={F) ,  (7) 
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with U =  { Ui} and Ui=(ui, ui, pi) at node i, K ( U )  is a non-linear matrix. Equation (7) is solved 
using Newton-Ralphson method. Finer mesh is generated in the vicinity of the cylinders where 
boundary layers are formed. Cylinder spacings are varied between L I D  = 2-5 and L I D  = 8.0 to 
study flow interferences and vortex shedding characteristics. Solutions with fully developed 
vortex streets are obtained first, which serve as initial conditions for subsequent computations 
with forced oscillation. For each spacing, forcing frequency is swept around fso in order to 
determine the synchronization range (Lo denotes vortex shedding frequency without forced 
oscillation). 

The forces exerted on the cylinders are calculated at each time step. The drag and the lift 
coefficients are determined by the following formulae: 

The consistency in mesh refinement is also tested, showing that the mesh used in the present work 
(2697 nodal points and 640 elements) is sufficient for global error control of flow quantities. All 
computations are carried out on a single processor of an Intel iPSCJ860 computer. 

3. FLOW REGIMES AND FLOW CHARACTERISTICS 

We first discuss different flow regimes for two tandem cylinders placed in crossflow. Both 
experimental and numerical results have shown the existence of a critical cylinder spacing (LID),, 
characterizing two different flow regimes, referred to as ‘vortex suppression (VS) regime’ and 
‘vortex formation (VF) regime’.5,8,9y 11, l 2  Vortex suppression regime occurs when the spacing 
between the two cylinders is inferior to the critical spacing. In this regime, the shear layers 
separating from the upstream cylinder reattach to the downstream cylinder so that vortices do 
not have sufficient room to grow, to develop and to shed. Since the downstream cylinder is in the 
attached vortex region of the upstream cylinder, its equivalent oncoming ‘free-stream’ velocity is 
quite weak. This leads to an even weaker wake behind it. Although in almost all cases there is no 
evident oscillation in the near wake of the downstream cylinder, visible or strong oscillations are 
observed in the far wake from the numerical simulation (Figure 2(a)). 

When the spacing between the two cylinders is greater than its critical value, a vortex formation 
regime appears and vortex streets form behind both cylinders. The occurrence of vortex shedding 
between the two cylinders creates oscillatory oncoming flow upstream of the second cylinder, and 
this leads to a stronger oscillatory flow behind the downstream cylinder. In Figure 2, we show the 
velocity fields in two flow regimes for one complete shedding cycle (Re = 100, at L / D  = 2.5 (the VS 
regime) and L I D  = 4.5 (the VF regime)). 

The two flow regimes can also be distinguished by examining the time-averaged vortex length 
1, between the two cylinders. This length I ,  is defined as the distance from the back stagnant point 
of the upstream cylinder to the point on the centreline at which the time-averaged velocities 
U = V = 0. This point is denoted as ‘time-averaged stagnant point’, shown in Figure 3. Figure 4 
shows the vortex lengths 1, as a function of cylinder spacing LID.  In the VS regime, since the 
vortices behind the first cylinder have no room to develop, no detachment occurs. And the vortex 
length is simply equal to the distance between the two cylinders (from the back stagnation point 
of the first cylinder to the front stagnation point of the second cylinder). Thus, 1, is found to 
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Figure 2. Flow fields for one complete vortex shedding cycle (Re = 100): (a) LID = 2.5, VS regime; (b) L/D=4.5, VF regime 
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Figure 2. (Continued) 
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Figure 3. Averaged longitudinal velocity ti variation in centreline ( y = O )  for LID =3.7 and Re= 100, and the definition of 

vortex length I, 

increase linearly with LID. In the VS regime, when LID is increased, the vortices have more room 
to grow and stretch, they do not break down and shed off until they reach the maximum stable 
length. So, the spacing at which the maximum stable vortex length is reached is the critical 
spacing separating the two flow regimes. Once the vortices begin to shed off, the time-averaged 
stagnation point is different from the front stagnation point of the downstream cylinder, and the 
averaged vortex length becomes shorter. The downstream cylinder acts as an obstacle in the 
vortex street of the upstream cylinder. In the V F  regime, with increasing LID, the vortex street 
between the two cylinders develops more freely and is more strong, so that vortex length 
decreases and approaches asymptotically the value of freely shedded vortices at large spacing. 

The circumferential pressure distributions of the two cylinders are also different in the two 
regimes.539. 11, l 2  In the VF regime, the shapes of circumferential pressure profile on upstream and 
downstream cylinders are similar, with one maximum corresponding to the front stagnant 
pressure. This means that the flow pattern near the two cylinders are analogous. However, in the 
VS regime, while the pressure distribution of the upstream cylinder still remains similar, that of 
the downstream cylinder shows two maxima corresponding to the two reattachment points. The 
disappearance of the maximum front stagnant point of the downstream cylinder indicates 
a change in flow pattern. From circumferential pressure distribution of the downstream cylinder, 
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Figure 4. Variation of averaged vortex length 1, versus the cylinder spacing L/D (Re = 100) 

one can easily identify the two flow regimes. In Figure 5, we plot pressure variations at front and 
back stagnant points of both cylinders as a function of cylinder spacing at Re= 100. As one may 
expect, the pressures on the upstream cylinder do not change much with respect to LID, whereas 
the pressures on the downstream cylinder have completely different variations. At small spacings, 

2 3 4 5 6 7 8 

WD 
Figure 5. Front and back stagnant pressures of both cylinders versus the cylinder spacing L/D (Re= 100): (0) front 
stagnant pressure of upstream cylinder; (@) back stagnant pressure of upstream cylinder; (0) front stagnant pressure of 

downstream cylinder; ( W )  back stagnant pressure of downstream cylinder 
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the pressure of the downstream cylinder is higher at the back stagnant point than at the front 
stagnant point, so that its drag coefficient may be negative, as is observed in some experiments.'* 

The change of flow regime also causes discontinuous jumps in drag and lift coefficients at 
critical spacing. The drag coefficient of the upstream cylinder is less influenced by the change of 
flow regime, since its oncoming flow remains uniform (Figure 6). The lift coefficients of both 
cylinders jump from almost zero to positive values (Figure 7). The upstream cylinder has a larger 
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Figure 6. Drag coefficients versus cylinder spacing LID at Re=100: (0) upstream cylinder; (0) downstream cylinder 
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Figure 7. Lift coefficients versus cylinder spacing L/D at Re= IDO: (0) upstream cylinder; (a) downstream cylinder 
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drag but a smaller lift coefficient, indicating that oscillation is stronger in the downstream 
cylinder wake; therefore, the jumps are steeper for the downstream cylinder. 

4. WAKE-CYLINDER-OSCILLATION-WAKE INTERACTION 

In Section 3, we discussed the flow regimes and their influences on flow characteristics. To 
understand how flow regimes affect frequency selection in the presence of forced oscillation, we 
consider the case in which the downstream cylinder is forced to oscillate transversely in the wake 
of the upstream cylinder. In order to compare with the available experimental data, we chose 
Re = 80 and A/2nfc = 0.14. Critical spacing for Re = 80 is determined to be 3.7 from our numerical 
da ta5  The critical spacing is found to decrease when the Reynolds number is increased. Since the 
cylinder oscillates in the wake of another cylinder, frequency selection of its vortex wake depends 
not only on its downstream wake and its oscillation but also on its oncoming wake flow. 
Changing the cylinder spacing results in different flow regimes, thus leading to different response 
states. These response statcs can be determined from time histories of velocity components, from 
drag and lift coefficients and their corresponding power spectral density plots. It should also be 
noted that after we apply the forced oscillation onto the cylinder, the system undergoes 
a transition to the establishment of the final response states (lock-in or non-lock-in state). We 
studied only these final states. The moment of applying the initial forcing (i.e. the initial phase 
angle between the shedding frequency and the forcing frequency) seems not lo affect the numerical 
results obtained. 

In Figures 8 and 9, time histories of drag and lift coefficients of the downstream cylinder at 
different driving frequencies are plotted, respectively. Cylinder spacing is LID = 4 and natural 
vortex shedding frequency Lo is 0 144. Forcing frequency fc is varied between 1.02h0 and 1.20h0 . 
When fF gradually approaches the natural shedding frequency Lo, the slowly varying period 
becomes longer and longer until it disappears completely (corresponding to an infinite slowly 
varying cycle). In fact, this slow-varying cycle corresponds to the harmonic of the system with 
a frequency equal to Ifc-fsl. Drag and lift coefficients change from composite wave forms 
(quasiperiodic non-lock-in behaviour) to sinusoidal wave forms (periodic lock-in behaviour). 
Their corresponding power spectral density plots are shown in Figure 10 (the slow-varying 
frequencies are not shown because they are outside the frequency range of the plots). For 
quasiperiodic responses, both forcing frequency .f, and shedding frequency ji are detected in the 
spectra. Note that f ,  may be slightly different from Lo due to forced o ~ c i l l a t i o n . ~ ~ ~  For periodic 
response, vortex shedding frequency synchronizes with forcing frequency and the vortex wake is 
well organized. 

By changing the paramters, one can determine the lock-in range as functions of both forcing 
frequency and cylinder spacing. In Figure 1 1 ,  we plot the lock-in zone as a function of these 
parameters. Experimental data of Tanida et aL8 are also plotted in the diagram. In the VS regime, 
a large lock-in range is obtained because of the weak oncoming flow upstream of the oscillating 
cylinder. In the VF regime, it is the opposite. The reason is that strong oscillatory oncoming flow 
reinforces vortex shedding from the downstream cylinder at its natural shedding frequency and, 
thus, makes it very difficult for the vortex shedding frequency to be locked by the driving 
frequency. At sufficiently large LID,  no lock-in is observed in our simulation. Experimental data 
show a similar variation. The discrepancy in lock-in range between LID = 3.5 and 5.0 comes from 
the difference in critical cylinder spacing (LID),, between the experiments and the numerical 
simulations. Tanida et aZ.* found it 5.0 instead of 3.7 in their experiments, which may possibly be 
attributed to the 3D effects in the experiments3 Despite such a discrepancy, qualitative good 
agreement between experiments and numerical simulations is still observed. This has shown that 
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Figure 11. Lock-in region diagram ( R e = 8 0  and A/2sfc=0.14). Numerical results are represented by lines, while 
experimental results of Tanida et aL8 are represented by circles: (0) lower limit; (0 )  upper limit of the lock-in zone 

the forcing mechanism used in the present study has reflected the basic characteristics of 
wake cylinder-oscillation-wake interactions. 

5. CONCLUSIONS 

The system consisting of two identical cylinders in tandem arrangement was considered in this 
study. Flow regimes, flow characteristics, non-linear interaction of cylinder oscillation and its 
upstream and downstream vortex wake are investigated. The results obtained enable us to draw 
the following conclusions about flow patterns and characteristics as well as about the frequency 
selection process of the oscillating cylinder wake: 

(1) Cylinder spacing affects essentially the flow patterns around the two cylinders. At critical 
spacing ((L/D)cr zz 3-0 for Re = 100 and (L/D),, % 3.7 for Re = 80), flow changes from ‘the VS 
regime’ to ‘the VF regime’. The two regimes are characterized by the changes of averaged 
vortex lengths, the circumferential pressure profiles of downstream cylinder as well as drag 
and lift coefficient variations with respect to  cylinder spacings. 

(2) The response state in the wake of the downstream oscillating cylinder is either periodic 
(lock-in state) or  quasi-periodic (non-lock-in state), which is a result of non-linear inter- 
actions among its upstream, downstream wakes and its oscillation. Its lock-in zone size is 
directly associated with flow regimes. Increasing the cylinder spacing results in a decrease of 
lock-in range. In the VS regime, lock-in is much more likely to occur than it does in the VF 
regime. 
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